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Abstract

A second kind integral equation formulation is presented for the Dirichlet problem for the Laplace equation in two

dimensions, with the boundary conditions specified on a collection of open curves. The performance of the obtained

apparatus is illustrated with several numerical examples. The formulation is a simplification of the equation previously

constructed by the authors.
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1. Introduction

Integral equations have been one of principal tools for the numerical solution of scattering problems

for more than 30 years, both in the Helmholtz and Maxwell environments. Historically, most of the

equations used have been of the first kind, since numerical instabilities associated with such equations
have not been critically important for the relatively small-scale problems that could be handled at the

time.

The combination of improved hardware with the recent progress in the design of ‘‘fast’’ algorithms has

changed the situation dramatically. Condition numbers of systems of linear algebraic equations resulting

from the discretization of integral equations of potential theory have become critical, and the simplest way

to limit such condition numbers is by starting with second kind integral equations. Hence, increasing in-

terest in reducing scattering problems to systems of second kind integral equations on the boundaries of the

scatterers.
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During the last several years, satisfactory integral equation formulations have been constructed in both

acoustic (Helmholtz equation) and electromagnetic (Maxwell�s equations) environments, whenever all of

the scattering surfaces are ‘‘closed’’ (i.e., scatterers have well-defined interiors, and have no infinitely thin
parts). In this paper, we describe a second kind integral equation formulation for the Dirichlet problem for

the Laplace equation with boundary data specified on a collection of ‘‘open’’ curves. We start with con-

structing the right inverse of the single layer potential operator on a line segment via simple analytic means;

then we apply such operator as a preconditioner for the single layer potential operator on the curve

considered to obtain a second kind integral operator.

Remark 1. In a recent paper [7], the authors construct a somewhat different procedure for the solution of

problems of the classical potential theory with data specified on a collection of open surfaces. While the

approach of the present paper is very similar to that of [7], in [7], the single layer potential is used to

precondition the quadruple layer potential from the right; here, the quadruple layer potential is used to

precondition the single layer potential from the right. For technical reasons, the latter leads to a drastically
simplified numerical procedure (and also, requires simpler analysis); hence, this sequel to [7].

Remark 2. As observed by one of referees to this paper, a second kind integral equation is constructed in
[11] (Chapter 16) in the Laplace environment. In [11], the solution of the Dirichlet problem is represented

via the real part of the Cauchy�s integral and the resulting boundary equation is a singular integral

equation. A second kind integral equation is then obtained by applying the inverse operator of the Cauchy�s
integral operator from the left to both sides of the equation. However, the scheme of [11] cannot be easily

extended either to three dimensions or to the Helmholtz equation in two dimensions, since it relies heavily

on the harmonic property of the solution and the techniques of complex analysis.

Remark 3. As observed by another of referees to this paper, a closed surface enclosing very thin volumes

presents difficulties closely related to those associated with open surfaces. This class of issues is not treated

in this paper.

The layout of the paper is as follows. Section 2 contains an informal description of the procedure. In

Section 3, the necessary mathematical and numerical preliminaries are introduced. In Sections 4, we present

the principal analytic result of the paper. In Section 5, we describe a simple numerical implementation of

the scheme. The performance of the algorithm is illustrated in Section 6 with several numerical examples.
Finally, in Section 7 we discuss several generalizations of the approach.
2. Informal description of the procedure

In this section, we present an informal description of the procedure. We assume that c : ½�1; 1� ! R2 is a

sufficiently smooth ‘‘open’’ (i.e., cð�1Þ 6¼ cð1Þ) curve with the parametrization

cðtÞ ¼ ec L
2
� ðt

�
þ 1Þ

�
; ð1Þ

where L is the total arc length of the curve, and ec : ½0; L� ! R2 is the same curve parametrized by its arc

length. The image of c will be denoted by C. We consider the Dirichlet problem for the Laplace equation in

two dimensions, with the boundary conditions specified on C, i.e.,

Du ¼ 0 in R2 n C;
u ¼ f on C:

�
ð2Þ
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This problem has a unique bounded solution if the Dirichlet data f is sufficiently smooth (see, for example,

[9, p. 121]). The purpose of this paper is to reduce the problem (2) to a second kind integral equation on C.
The tools of the classical potential theory by themselves donot lead to such an integral equation. Indeed, the

standard prescription (see, for example, [9]) is to represent the solution of aDirichlet problemby a double layer

potential, and the solution of the Neumann problem by a single layer potential. In either case, the behavior of

the singularity near the boundary is such that an integral equation of the second kind on C is obtained.

However, the classical procedure critically depends on C being a closed curve. Indeed, the potential of a

double layer on the curve C experiences a jump when C is crossed; the magnitude of the jump is equal to the

density of the double layer at the crossing point. This poses no problem when the curve is a closed one, since

the potential is to be represented on only one (inner or outer) side of the curve. For an open curve, the

potential has to be represented on both sides of the curve; and in most cases, the right-hand side f (viewed
as the limiting value of the solution from both sides) has no jump across C. Thus, an attempt to represent

the solution of (2) via a double layer potential results in a dipole density that is identically equal to zero.

One could attempt to represent the solution of (2) by a charge distribution on C. The resulting potential

is continuous across C, and algorithms of this type have been constructed and used numerically (see, for

example, [6]). However, the resulting integral equation is of the first kind (though, fortunately, with a

logarithmically singular kernel), with all the usual numerical disadvantages. Another option is to use the

quadruple layer potential of the form

RðrÞðxÞ ¼
Z 1

�1

o2

oNðtÞ2
ðlog jjx� cðtÞjjÞ � rðtÞdt; ð3Þ

with NðtÞ the unit normal to C at cðtÞ; the resulting equation is not an integral equation at all, containing a

part that is actually a distribution. In engineering literature, such objects are known as ‘‘hypersingular

integral equation’’. Satisfactory procedures have been constructed for their numerical solution (see, for

example, [3,10,12]); however, these are not as simple or as stable as the many methods available for the

solution of second kind integral equations.
This paper is based on the observation that when the curve is the line segment I ¼ ½�1; 1�, the right

inverse of the single layer potential operator (denoted by S�1
I ) can be constructed by simple analytic means,

where the single layer potential operator SI : L1½�1; 1� ! C½�1; 1� is defined by the formula

SIðrÞðxÞ ¼
Z 1

�1

log jx� tj � rðtÞdt: ð4Þ

Furthermore, if S�1
I is used as a preconditioner for the single layer potential operator Sc : L1½�1; 1� ! CðR2Þ

on C defined by the formula

ScðrÞðzÞ ¼
Z 1

�1

log jz� cðtÞj � rðtÞdt; ð5Þ

i.e., the solution of the problem (2) is represented in the form

uðxÞ ¼ ScsS�1
I ðgÞðxÞ; ð6Þ

then the resulting boundary integral equation is of the second kind.

Remark 4. A stable second kind integral equation formulation has also been developed for the problem (2)

in [7]. Two key observations used in [7] are: first, the product of the quadruple layer potential operator and

the single layer potential operator is a second kind integral operator for the case of a closed curve; second,
the case of a line segment can be solved analytically. The integral representation for the solution of the

problem (2) in [7] is of the form
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uðxÞ ¼ QcsSIsðQIsSIÞ�1ðgÞðxÞ; ð7Þ

where Qc is the sum of a quadruple layer potential and a weighted double layer potential with the weight

equal to the curvature, SI is the single layer potential operator for the line segment I ¼ ½�1; 1�, and

ðQIsSIÞ�1
is (in the appropriate sense) the right inverse of QIsSI . The approach of this paper differs from

that of [7] in that the roles of Q and S are interchanged, leading to a simpler scheme. Indeed, straight-

forward analysis shows that the representation (6) is equivalent to

uðxÞ ¼ ScsQIsðSIsQIÞ�1ðgÞðxÞ: ð8Þ

In other words, the solution of (2) is represented by a single layer potential on C preconditioned by the

quadruple layer potential for the line segment I , with a further preconditioning by the right inverse of

SIsQI to eliminate the singularities at the end points.
3. Analytical preliminaries

In this section, we summarize several results from classical and numerical analysis to be used in the

remainder of the paper. Detailed references are given in the text.

3.1. Chebyshev polynomials and Chebyshev approximation

Chebyshev polynomials are frequently encountered in numerical analysis. As is well known, Chebyshev
polynomials of the first kind Tn : ½�1; 1� ! R ðnP 0Þ are defined by the formula

TnðxÞ ¼ cosðn arccosðxÞÞ; ð9Þ

and are orthogonal with respect to the inner product

ðf ; gÞ ¼
Z 1

�1

f ðxÞ � gðxÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx: ð10Þ

Chebyshev polynomials of the second kind Un : ½�1; 1� ! R ðnP 0Þ are defined by the formula

UnðxÞ ¼
sinððnþ 1Þ arccosðxÞÞ

sinðarccosðxÞÞ ; ð11Þ

and are orthogonal with respect to the inner product

ðf ; gÞ ¼
Z 1

�1

f ðxÞ � gðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
dx: ð12Þ

The Chebyshev nodes xi of degree N are the zeros of TN defined by the formula

xi ¼ cos
ð2iþ 1Þp

2N
; i ¼ 0; 1; . . . ;N � 1: ð13Þ

For a sufficiently smooth function f : ½�1; 1� ! R, its Chebyshev expansion is defined by the formula

f ðxÞ ¼
X1
k¼0

Ck � TkðxÞ; ð14Þ

with the coefficients Ck given by the formulae
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C0 ¼
1

p

Z 1

�1

f ðxÞ � T0ðxÞ � ð1� x2Þ�1=2
dx; ð15Þ

and

Ck ¼
2

p

Z 1

�1

f ðxÞ � TkðxÞ � ð1� x2Þ�1=2
dx; ð16Þ

for all kP 1. We will also denote by PN
f the order N � 1 Chebyshev approximation to the function f on the

interval ½�1; 1�, i.e., the (unique) polynomial of order N � 1 such that PN
f ðxiÞ ¼ f ðxiÞ for all i ¼ 0; 1; . . . ;

N � 1, with xi the Chebyshev nodes defined by (13).

The following lemma provides an error estimate for the Chebyshev approximation (see, for example, [4]).

Lemma 5. If f 2 Ck½�1; 1� (i.e., f has k continuous derivatives on the interval ½�1; 1�), then for any

x 2 ½�1; 1�,

PN
f ðxÞ

��� � f ðxÞ
��� ¼ O

1

Nk

� �
: ð17Þ

In particular, if f is infinitely differentiable, then the Chebyshev approximation converges superalgebraically

(i.e., faster than any finite power of 1=N as N ! 1).

3.2. Miscellaneous results

In this section, we collect several results from classical analysis to be used subsequently. Lemma 6 lists

two standard definite integrals; both can be found (in a somewhat different form) in [5]. Lemma 7 states a

standard fact from classical potential theory; it can be found in [9]. Finally, Lemma 8 states that if the curve

c is sufficiently smooth, then the restriction of the kernel of the operator Sc � SI on C is also smooth (see (4),

(5) for the definitions of SI and Sc).

Lemma 6. For any x 2 ð�1; 1Þ,Z 1

�1

log jx� tj � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼ �p � log 2; ð18Þ

and

p:v:

Z 1

�1

1

x� t
� Un�1ðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
dt ¼ p � TnðxÞ; ð19Þ

for any nP 1.

Lemma 7. Suppose that c : ½�1; 1� ! R2 is a sufficiently smooth open regular curve with the parametrization

(1), and that the function r 2 L1½�1; 1� satisfies the conditionZ 1

�1

rðtÞdt ¼ 0: ð20Þ

Then the function u : R2 ! R defined by the formula

uðxÞ ¼
Z 1

�1

log jx� cðtÞj � rðtÞdt ð21Þ

is bounded in R2.
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Lemma 8. Suppose that c 2 Ckþ1½0; L� (kP 1) is an open regular curve parametrized by its arc length in R2.

Suppose further that the function r : ½0; L� � ½0; L� ! R is defined by the formula

rðx; tÞ ¼ log jcðxÞ � cðtÞj � log jx� tj; x 6¼ t;
0; x ¼ t:

�
ð22Þ

Then r 2 Ckð½0; L� � ½0; L�Þ.

Proof. Since c is parametrized by its arc length, we have

jc0ðxÞj ¼ 1; ð23Þ

for all x 2 ½0; L�. Combining (22), (23), we observe that

rðx; tÞ ¼ log jhðx; tÞj; ð24Þ

where the function h : ½0; L� � ½0; L� ! R2 is defined by the formula

hðx; tÞ ¼
cðxÞ�cðtÞ

x�t ; x 6¼ t;
c0ðxÞ; x ¼ t:

�
ð25Þ

Obviously, h is k times continuously differentiable for c 2 Ckþ1½0; L� by Taylor�s Theorem. Furthermore,
since cðxÞ 6¼ cðtÞ if x 6¼ t, and jc0ðxÞj ¼ 1 for all x 2 ½0; L�, we have

jhðx; tÞj 6¼ 0 for all ðx; tÞ 2 ½0; L� � ½0; L�: ð26Þ

Therefore, the function r ¼ log jhj is also k times continuously differentiable in ½0; L� � ½0; L�. �
4. Analytical apparatus

4.1. Right inverse of the single layer potential operator on the line segment

The purpose of this section is Theorem 10, providing the right inverse of the single layer potential

operator on the line segment I ¼ ½�1; 1�. The construction is based on an elementary integral identity stated

in Lemma 9.

Lemma 9. For any x 2 ð�1; 1Þ,Z 1

�1

log jx� tj � T0ðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼ �p � log 2 � T0ðxÞ; ð27Þ

and Z 1

�1

log jx� tj � TnðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼ � p
n
� TnðxÞ; ð28Þ

for any nP 1.

Proof. (27) directly follows from the combination of the identity (18) and the fact that T0ðxÞ ¼ 1 for all

x 2 ½�1; 1�. To prove (28), we integrate by parts once, obtaining



S. Jiang, V. Rokhlin / Journal of Computational Physics 195 (2004) 1–16 7
Z 1

�1

log jx� tj � TnðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼ � 1

n
p:v:

Z 1

�1

1

x� t
� Un�1ðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
dt: ð29Þ

Now, (28) follows from the combination of (29), (19). �

Theorem 10. Suppose that the linear operator eS : C½�1; 1� ! L1½�1; 1� is defined by its action on the functions

Tn (nP 0) via the formula

eSðTnÞðxÞ ¼ � 1

p � log 2 �
T0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ; n ¼ 0;

� n
p
� TnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ; n > 0:

8>><>>: ð30Þ

Suppose further that the operator SI : L1½�1; 1� ! C½�1; 1� is defined by the formula

SIðrÞðxÞ ¼
Z 1

�1

log jx� tj � rðtÞdt: ð31Þ

Then

SIseS ¼ I; ð32Þ
with I the identity operator. In other words, eS is the right inverse of SI on the space of continuous functions.

Proof. Since Tn (nP 0) form a basis for the space C½�1; 1�, and the operators SI , eS are linear, we only need

to prove that the identity

SIseSðTnÞðxÞ ¼ TnðxÞ ð33Þ
holds for all nP 0. Substituting (30) into (31) we obtain

SIseSðTnÞðxÞ ¼ � 1

p � log 2 �
Z 1

�1

log jx� tj � T0ðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt; n ¼ 0;

� n
p
�
Z 1

�1

log jx� tj � TnðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt; n > 0:

8>><>>: ð34Þ

Combining (33), (34), we observe that it suffices to prove the identityZ 1

�1

log jx� tj � TnðtÞffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p dt ¼
�p � log 2 � T0ðxÞ; n ¼ 0;

� p
n
� TnðxÞ; n > 0;

(
ð35Þ

which directly follows from Lemma 9. �

4.2. Second kind integral equation formulation

In this section, we reduce Problem (2) to an integral equation of the second kind on the curve C; the
results are summarized in Theorem 12. We start with defining the operator eSc : C½�1; 1� ! CðR2Þ via the

formulaeScðrÞðzÞ ¼ ScseSðrÞðzÞ; ð36Þ
with Sc, eS defined by (5), (30), respectively. Combining (36) with Theorem 10, we easily see that for ar-

bitrary smooth r : ½�1; 1� ! R and cðxÞ 2 C,eScðrÞðcðxÞÞ ¼ SIseSðrÞðxÞ þ ðSc � SIÞseSðrÞðcðxÞÞ ¼ rðxÞ þ ðSc � SIÞseSðrÞðcðxÞÞ; ð37Þ
and the following theorem shows that the operator Pc ¼ ðSc � SIÞseS is compact.
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Theorem 11. Suppose that c : ½�1; 1� ! R2 is a sufficiently smooth open regular curve with the parametri-

zation (1). Suppose further that the operator Pc : C½�1; 1� ! C½�1; 1� is defined by the formula

PcðrÞðxÞ ¼ ðSc � SIÞseSðrÞðcðxÞÞ ¼ Z 1

�1

ðlog jcðxÞ � cðtÞj � log jx� tjÞ � eSðrÞðtÞdt; ð38Þ

with Sc, SI , eS defined by (5), (31), (30), respectively. Then Pc is compact.

Proof. By Lemma 8, the function er : ½�1; 1� � ½�1; 1� ! R defined by the formula

erðx; tÞ ¼ log jcðxÞ � cðtÞj � log jx� tj ð39Þ

is k times continuously differentiable for any c 2 Ckþ1½�1; 1�. Obviously, if er is expanded into a double

Chebyshev series

erðx; tÞ ¼ X1
m¼0

X1
n¼0

KmnTmðxÞTnðtÞ; ð40Þ

then there exists a positive number C such that

jKmnj <
C

mk � nk ð41Þ

for any m > 0, n > 0. Now, for any N > 0, we will define the operator PN : C½�1; 1� ! C½�1; 1� by the

formula

PNðrÞðxÞ ¼
Z 1

�1

erN ðx; tÞ � eSðrÞdt; ð42Þ

with the function erN : ½�1; 1� � ½�1; 1� ! R defined by the formula

erN ðx; tÞ ¼ XN
m¼0

XN
n¼0

KmnTmðxÞTnðtÞ: ð43Þ

Obviously, PN is a compact operator since its range is of finite dimensionality. Furthermore, PN con-

verges to Pc as N ! 1 by (41). Hence, Pc is also a compact operator.

We will represent the solution of Problem (2) via the formula

uðxÞ ¼ eScðrÞðxÞ þ A ¼
Z 1

�1

log jx� cðtÞj � eSðrÞðtÞdt þ A; ð44Þ

where A is a real constant to be determined. Combining Lemma 7 and Theorem 11, we obtain the principal

result of this paper. �

Theorem 12. Suppose that c : ½�1; 1� ! R2 is a sufficiently smooth open regular curve with the parametri-

zation (1), and that the function f : ½�1; 1� ! R is continuously differentiable. Suppose further that the con-

tinuous function r : ½�1; 1� ! R and the coefficient A satisfy the equations

rðxÞ þ PcðrÞðxÞ ¼ f ðxÞ � A; ð45Þ
Z 1

�1

rðxÞ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼ 0; ð46Þ
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with Pc defined in (38). Then the function u : R2 ! R defined by (44) is bounded in R2 and is the solution of the

problem

Du ¼ 0 in R2 n C;
u ¼ f on C:

�
ð47Þ
Remark 13. Obviously, the purpose of the constant A in the above theorem is to ensure the boundedness of

the solution u of (2). In certain physical situations, the potentials of interest are not bounded at infinity, but

rather grow logarithmically. In such cases, the solution to (2) assumes the form

uðxÞ ¼ eScðrÞðxÞ; ð48Þ

with r satisfying the integral equation

rðxÞ þ PcðrÞðxÞ ¼ f ðxÞ: ð49Þ
5. Numerical algorithm

In this section, we construct a rudimentary numerical algorithm for the solution of the Dirichlet problem

(47) via the Eqs. (45) and (46). Since the construction of the matrix and the solver of the resulting linear

system are direct, the algorithm requires OðN 3Þ work and OðN 2Þ storage, with N the number of nodes on

the boundary. While standard acceleration techniques (such as the Fast Multipole Method, etc.) could be

used to improve these estimates, no such acceleration was performed, since the purpose of this section (as

well as the following one) is to demonstrate the stability of the integral formulation and the convergence

rate of a very simple discretization scheme.

By Theorem 12, the equations to be solved are (45) and (46), where the unknowns are the function r and
the real number A. To solve (45) and (46) numerically, we discretize the boundary into N Chebyshev nodes

and approximate the unknown density r by a finite Chebyshev series of the first kind,

rðtÞ ’
XN�1

k¼0

Ck � TkðtÞ; ð50Þ

with the coefficients Ck (k ¼ 0; . . . ;N � 1) to be determined. In order to discretize (45), we start with ob-

serving that by (29), the action of the operator eS on the function r is described via the formula

eSðrÞðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
XN�1

k¼0

Bk � Ck � TkðxÞ; ð51Þ

where the coefficients Bk ðk ¼ 0; . . . ;N � 1Þ are given by the formulae

B0 ¼ � 1

p log2
;

Bk ¼ � k
p
; 16 k6N � 1:

8><>: ð52Þ

Next, we approximate the kernel erðx; tÞ (see (40)) of the operator Sc � SI with an expression of the form

erðx; tÞ ’ XN�1

i¼0

XN�1

j¼0

Kij � TiðxÞ � TjðtÞ: ð53Þ
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Clearly, the coefficients Kij have to be determined numerically, since the curve C is user-specified, and is

unlikely to have a convenient analytical expression. Thus, we obtain the coefficients Kij by first constructing

the N � N matrix R ¼ ðerðxi; tjÞÞ ði; j ¼ 0; 1; . . . ;N � 1Þ with xi; tj the Chebyshev nodes defined by (13) then
converting R into the matrix K ¼ ðKijÞ ði; j ¼ 0; 1; . . . ;N � 1Þ by the formula

K ¼ U � R � UT ; ð54Þ

with N � N matrix U ¼ ðUijÞ defined by the formula

U0j ¼ 1
N � T0ðxjÞ; j ¼ 0; 1; . . . ;N � 1;

Uij ¼ 2
N � TiðxjÞ; i ¼ 1; . . . ;N � 1; j ¼ 0; 1; . . . ;N � 1;

�
ð55Þ

Finally, we approximate the prescribed Dirichlet data f by its Chebyshev approximation of order N � 1

f ðtÞ ’
XN�1

k¼0

f̂k � TkðtÞ; ð56Þ

where the coefficients f̂k can be obtained by first evaluating f at Chebyshev nodes xi, then applying to it the

matrix U defined by (55), i.e.,

f̂k ¼
XN�1

i¼0

Uki � f ðxiÞ: ð57Þ

Combining (51), (53), (56),we discretize (45) into the equation

eA �

C0

C1

..

.

CN�1

0BBB@
1CCCAþ A �

1

..

.

0

0@ 1A ¼

f̂0
f̂1
..
.

f̂N�1

0BBB@
1CCCA; ð58Þ

with N � N matrix eA defined by the formulaeA ¼ IN þ K � B; ð59Þ

with IN the N � N identity matrix, and B the diagonal matrix defined by the formula

Bij ¼ Bi � dij: ð60Þ

Furthermore, (46) leads to the equation

C0 ¼ 0; ð61Þ

Finally, (58) and (61) together form a linear system of dimension N þ 1 to be solved.

Remark 14. The generalization of the above scheme to the case of several disjoint open curves is

straightforward, and has been implemented by the authors (see Example 4 in Section 6).
6. Numerical examples

A FORTRAN code has been written implementing the algorithm described in the preceding section. In

this section, we demonstrate the performance of the scheme with several numerical examples. We consider
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the problem in electrostatics: the boundary is made of conductor and grounded, the electric field incident on

the boundary is generated by the sources outside the boundary. For these examples, we plot the equipo-

tential lines of the total field and present tables showing the convergence rate of the algorithm.

Remark 15. In the examples below, the problems to be solved via the procedure of the preceding section

have no simple analytical solution. Thus, we tested the accuracy of our procedure by evaluating our so-
lution via the formula (44) at a large number M of nodes on the boundary C (in our experiments, we always

usedM ¼ 2000), and comparing it with the analytically evaluated right-hand side. We did not need to verify

the fact that our solutions satisfy the Laplace equation, since this follows directly from the representation

(44).

In each of those tables, the first column contains the total number N of nodes in the discretization of

each curve. The second column contains the condition number of the linear system. The third column

contains the relative L2 error of the numerical solution as compared with the analytically evaluated Di-

richlet data on the boundary. The fourth column contains the maximum absolute error on the boundary. In

the last two columns, we list the errors of the numerical solution as compared with the numerical solution

with twice the number of nodes, where the solution is evaluated at 1000 equispaced points on a circle of
radius 3.3 centered at the origin; the fifth column contains the relative L2 error, and the sixth column

contains the maximum absolute error.

Example 1. In this example, the boundary is the line segment parametrized by the formula

xðtÞ ¼ t;
yðtÞ ¼ �0:2;

�
� 16 t6 1: ð62Þ

The Dirichlet data are generated by a unit charge at ð0; 0Þ. The numerical results are shown in Table 1. The

source, curve and equipotential lines are plotted in Fig. 1.

Example 2. In this example, the boundary is a sinusoidal arc parametrized by the formula

xðtÞ ¼ 0:5t;
yðtÞ ¼ cosðtÞ;

�
� 3p

2
6 t6

3p
2
: ð63Þ

The Dirichlet data are generated by one positive charge of unit strength at (0, 1.5) and another negative

charge of unit strength at (0, 0). The numerical results are shown in Table 2. The sources, curve and

equipotential lines are plotted in Fig. 2.
Table 1

Numerical results for Example 1

N K E2ðCÞ E1ðCÞ E2ðuÞ E1ðuÞ

8 0.200E+01 0.703E) 01 0.178E+00 0.296E) 02 0.528E) 02

16 0.222E+01 0.759E) 02 0.212E) 01 0.641E) 04 0.114E) 03

32 0.212E+01 0.165E) 03 0.486E) 03 0.556E) 07 0.991E) 07

64 0.206E+01 0.147E) 06 0.446E) 06 0.835E) 13 0.150E) 12

128 0.203E+01 0.225E) 12 0.690E) 12 0.355E) 15 0.222E) 14

256 0.202E+01 0.935E) 15 0.214E) 13 0.343E) 15 0.200E) 14
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Fig. 1. Source, curve, and equipotential lines for Example 1.

Table 2

Numerical results for Example 2

N K E2ðCÞ E1ðCÞ E2ðuÞ E1ðuÞ

32 0.195E+01 0.271E) 01 0.864E) 01 0.658E) 02 0.469E) 02

64 0.187E+01 0.240E) 02 0.847E) 02 0.146E) 03 0.104E) 03

128 0.182E+01 0.422E) 04 0.157E) 03 0.135E) 06 0.955E) 07

256 0.179E+01 0.307E) 07 0.117E) 06 0.245E) 12 0.173E) 12

512 0.178E+01 0.431E) 13 0.160E) 12 0.971E) 15 0.133E) 14

1024 0.177E+01 0.304E) 14 0.450E) 13 0.941E) 15 0.122E) 14
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Example 3. In this example, the boundary is a spiral parametrized by the formula

xðtÞ ¼ t cosð3:3ptÞ � 0:1;
yðtÞ ¼ t sinð3:3ptÞ;

�
0:26 t6 3:2: ð64Þ

The Dirichlet data are generated by a unit charge at ð0; 0Þ. The numerical results are shown in Table 3. The
source, curve and equipotential lines are plotted in Fig. 3.

Example 4. In this example, we consider the case of several open curves. The boundary consists of three

elliptic arcs parametrized by the formulae

x1ðtÞ ¼ �t cosð3:3ptÞ � 1:45;
y1ðtÞ ¼ �t sinð3:3ptÞ þ 0:55;

�
0:26 t6 1:2; ð65Þ
x2ðtÞ ¼ t cosð3:3ptÞ � 0:1;
y2ðtÞ ¼ t sinð3:3ptÞ � 1:2;

�
0:26 t6 1:2; ð66Þ
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Fig. 2. Sources, curve, and equipotential lines for Example 2.

Table 3

Numerical results for Example 3

N K E2ðCÞ E1ðCÞ E2ðuÞ E1ðuÞ

32 0.704E+03 0.594E) 01 0.125E+00 0.233E+00 0.685E) 01

64 0.657E+02 0.108E) 02 0.665E) 02 0.417E) 02 0.201E) 02

128 0.523E+02 0.904E) 04 0.653E) 03 0.101E) 03 0.575E) 04

256 0.394E+02 0.213E) 05 0.183E) 04 0.179E) 06 0.125E) 06

512 0.279E+02 0.313E) 08 0.272E) 07 0.156E) 11 0.123E) 11

1024 0.196E+02 0.184E) 13 0.147E) 12 0.211E) 13 0.933E) 14
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x3ðtÞ ¼ t cosð3:3ptÞ þ 1:25;
y3ðtÞ ¼ t sinð3:3ptÞ þ 0:85;

�
0:26 t6 1:2: ð67Þ

The Dirichlet data are generated by four unit charges located at ð0; 0Þ, ð1:35; 0:75Þ, ð�1:55; 0:75Þ, ð0;�1:2Þ.
The numerical results are shown in Table 4, where N is the number of nodes on each curve. The sources,

curves and equipotential lines are plotted in Fig. 4.

Remark 16. The above examples illustrate the superalgebraic convergence of the scheme for smooth data

and curves (see Lemmas 5, 8). The number of nodes needed depends on the complexity of the underlying

geometry and the smoothness of the prescribed data. The condition number of the resulting linear system is

usually very low.
7. Conclusions and generalizations

We have presented a second kind integral equation formulation for the Dirichlet problem for the La-

place equation in two dimensions, with the boundary condition specified on a curve (consisting of one or
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Fig. 3. Source, curve, and equipotential lines for Example 3.

Table 4

Numerical results for Example 4

N K E2ðCÞ E1ðCÞ E2ðuÞ E1ðuÞ

8 0.204E+02 0.825E) 01 0.370E+00 0.848E+01 0.451E) 01

16 0.183E+02 0.180E) 01 0.121E+00 0.259E+00 0.121E) 02

32 0.145E+02 0.183E) 02 0.131E) 01 0.665E) 03 0.355E) 05

64 0.116E+02 0.355E) 04 0.455E) 03 0.738E) 07 0.252E) 09

128 0.963E+01 0.314E) 07 0.353E) 06 0.302E) 11 0.232E) 13

256 0.851E+01 0.511E) 13 0.520E) 12 0.269E) 11 0.192E) 13
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more separate segments). The resulting numerical algorithm converges superalgebraically whenever both

the boundary data and the curves are smooth.

In order to concentrate on the derivation and analysis of the integral formulation, we have chosen to use

a very simple numerical scheme (see Section 5 above); the CPU time requirements of the procedure of

Section 5 scale as n3, with n the number of nodes in the discretization of the curve where the boundary

condition is specified. A straightforward combination of the Fast Multipole Method (FMM), Fast Fourier

Transform (FFT), and one of many standard iterative solvers yields an order n � logðnÞ algorithm; such a
scheme has been implemented, and will be reported at a later date. It is also possible to construct an order n
scheme via the use of the FMM alone; according to the authors� estimates, for problems of practical size,

this would offer no advantages over an FFT-based procedure.

Remark 17. In the iterative scheme outlined above, each step requires order n � logðnÞ operations. Obvi-

ously, the complexity of the scheme also depends on the number of iterations needed to reach a required

tolerance, which is to a large extent (though not entirely) determined by the spectral behavior of the dis-

cretized system. As observed by one of referees to this paper, a critical question for large-scale problems is
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Fig. 4. Sources, curves, and equipotential lines for Example 4.
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how the spectrum of the matrix A of the discretized system (or the spectrum of A�A depending on the al-

gorithm used) behaves as more and more reasonably separated curves of similar shapes are added to the

geometry. This is currently under investigation.

The scheme of this paper can be applied almost without modification to elliptic PDEs other than the

Laplace equation (such as Helmholtz equation, Yukawa equation, etc.). Indeed, the Green�s function for

any such equation has the form

Gðx; yÞ ¼ /ðx; yÞ � logðjjx� yjjÞ þ wðx; yÞ; ð68Þ

with /, w a pair of smooth functions (see, for example, [2]). When the procedure of Section 4 of this paper is

applied to Green�s function of the form (68), the result is unchanged, except for the change in the compact

operator Pc in (38). However, the convergence rate of the numerical scheme of Section 5 deteriorates

drastically, since in this case the kernel K of the operator Pc in (38) is logarithmically singular (while for the
Laplace equation, it is smooth). High-order discretization schemes for such integral equations can be found

in the literature (see, for example, [1,8,13]).

Finally, most results of this paper admit generalizations to two-dimensional surfaces in R3; while the

necessary analytical apparatus is more involved, the results are very similar to those obtained here. Spe-

cifically, the product of a hypersingular integral operator on an open surface in R3 with the single layer

potential operators (either from the left or from the right) is an integral operator of the second kind, except

for simple corrections at the boundary of the surface. Such a scheme in three dimensions is being imple-

mented, and will be reported at a later date.
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